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Abstract. The Network Design Problem has been studied extensively and in many of these models
the cost is assumed to be a concave function of the loads on the links. In this paper we investigate
under which conditions this is indeed the case for the communication networks. The result is presen-
ted as a theorem, the Concavity Theorem, and a list of conditions that can easily be verified. It is also
shown how the theorem can be extended to other applications, like in the area of road transportation.
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1. The Network Design Problem

Consider a graph � = (N,L). Traffic between two nodes is called a commodity
and for each commodity k the offered traffic tk is specified. Also for each commod-
ity a set of possible paths Pk is specified that can be used for that commodity; for
instance this may simply be all possible paths between the two nodes. The alloca-
tion of traffic to the paths is called routing and it is assumed that all offered traffic is
routed. To accommodate the resulting traffic in the network, capacities have to be
assigned to the links of the paths, which are physical connections between nodes.
A link can be shared by several paths and the load on the link is the sum of the
traffic allocated to the paths that use it.

If fe is the load on link e ∈ L and hµ is the amount of traffic assigned to path µ

then these assumptions can be expressed as∑
µ∈Pk

hµ = tk, (1)

hµ � 0, (2)

fe =
∑
µ|e∈µ

hµ. (3)

The load on the network is the vector of all link loads f = (fe|e ∈ L) and � is
the set of all loads that can occur as the result of any routing of the offered traffic.
Note that � is a convex set.

The capacity of a link is interpreted differently from model to model but we
assume that it can be expressed by a single positive number ce and that ce = 0
indicates that the link is not available. So this gives rise to another vector, the
capacity vector c = (ce|e ∈ L). The relationship between the load f and the
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capacity c is assumed to be expressed by a cost function F(f, c) and a set of
constraints (f, c) ∈ S. The capacity constraints may simply be fe � ce or may
be missing all together, but some models have much more elaborate constraints.

The Network Design Problem in its most general form is then

minF(f, c) such that f ∈ �, (f, c) ∈ S. (4)

This problem can be tackled in many ways and there exists an extensive literat-
ure on this subject [6, 10, 17, 20].

An important step in obtaining a practical mathematical formulation for a net-
work design problem is to correctly model the interaction between the loads and
capacities, and the performance and design costs. The performance cost is the
operational cost related to transporting the flow on the links that may include the
travel time, the delay time, the cost of losing customers (because of the lack of
capacity) or even the maintenance costs. The design cost is the (monetary) cost of
constructing the link capacity or facilities to provide a certain rate of service. The
cost function F(f, c) consists of these two components.

The solution methods depend of course heavily on the specification of the cost
function F and the constraints S. This problem may be considered as a bilevel
optimization [4]. Therefore many of these methods, but not all, start by eliminating
the capacity variables c [8, 15] ; the remaining problem is then a routing problem
with the objective function

H(f ) = min
{c|(f,c)∈S}

F(f, c). (5)

This can be regarded as a multicommodity flow problem, which is important not
only due to the major relevance of its applications [1], but also because it poses
considerable modeling and algorithmic challenges [3, 10, 16, 20].

In many of the models the function H(f ) turns out to be concave. This is
assumed in a number of applications including production and inventory planning,
transportation and communication network design, facilities location and VLSI
design [13, 21] . Each application area gives rise to problems with different features
for both the costs and the feasible set. In each case, the concavity of the monetary
costs originates from start–up costs, discounts or economies of scale. It is the pur-
pose of this paper to investigate under which assumptions the objective function
H(f ) is concave . The aim is to make the assumptions as general as possible so
that many models are covered.

2. Store-and-forward communication networks

In communication systems both the load fe (which is the expected load in a sta-
tionary situation) and the capacity ce (which is the service rate) are measured in the
same units; the bit rate. The service rate of a link depends on the facilities which
are installed on the link and the adjacent nodes; the load depends on the offered
traffic and the routing.
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The cost function F(f, c) consists of two components:

F(f, c) = G(f, c) + X(c). (6)

The component X(c) is the cost of providing capacity for the links, and there-
fore does not depend on the load: this is called the design cost. The other cost,
G(f, c) is the performance costs and is a measure of how well the network op-
erates; this is a penalty cost associated with the delays in the network, which of
course depends on both the loads and the capacities. A class of problems which
has been widely studied is determining both the loads and capacities to minimize
the performance and delay costs. These problems are difficult to solve because
typically they are nonconvex [7].

The average delay on a link is defined as the mean time that each packet of
data will have to wait to be transmitted through that link. The formula for the
average delay De(fe, ce) given below (in the steady state case where fe < ce) can
be obtained by assuming Poisson arrival and service times:

De(fe, ce) = 1

ce − fe
. (7)

Then, assuming that the loads on the links are independently distributed, one
obtains for the total delay in the network the formula [11]

G(f, c) =
∑
e

fe

ce − fe
=

∑
e

fe/ce

1 − fe/ce
. (8)

Of course this is only a crude approximation of the actual delay, but the approx-
imation improves when the size of the network increases. This can therefore be
used to measure the performance and an appropriate multiple of this function can
then be used as the performance component of the objective function F(f, c).

3. The Concavity Result

In this section, we will present the assumptions and proof of the concavity theorem
for communications networks. The assumptions are so general that can cover other
networks as well. Also an example with a specific design cost is presented that will
approve the result for the objective function.

3.1. ASSUMPTIONS

We will start with listing the assumptions for communication networks which are
needed to prove concavity of the function H(f ). The following extra notation will
be used.

For a given vector x = (xe|e ∈ L) � 0, the set of all links with a positive value
L(x) = {e|xe > 0} is called the support of x.
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We will use the sign * for element–by–element vector multiplication. That
means, if x = (xe|e ∈ L) and y = (ye|e ∈ L) then

x ∗ y = (xeye|e ∈ L). (9)

1. To start with it has to be assumed that the function H(f ) exists at all! In other
words that there exists for each load f ∈ � a capacity vector c(f ) with
(f, c(f )) ∈ S such that

H(f ) = F(f, c(f )) � F(f, c) for all c such that (f, c) ∈ S. (10)

2. It is assumed that it never pays to provide capacity at a link that is not used at
all and that capacity has to be assigned to links that carry traffic, in other words
that

L(f ) = L(c(f )). (11)

3. The design cost X(c) is a concave function. This is a condition commonly
assumed for these types of costs, reflecting economies of scale. Although in
some practical applications, like the facility installing in communication and
telecommunication networks, the costs are step functions, but they can be well
approximated by concave functions.

4. The following assumption is made concerning the term G(f, c)

0 � G(α ∗ f, α ∗ c) � G(f, c), for all α � 0. (12)

This assumption needs some clarification. Firstly, it is easily seen that it implies
that G(α ∗ f, α ∗ c) = G(f, c) if L(f ) = L(c) and if, for all e ∈ L(f ), αe > 0.
This is so because for

ᾱe =



1

αe

if e ∈ L(f )

0 if e /∈ L(f )

,

applying 12 twice, we get

G(f, c) � G(α ∗ f, α ∗ c) � G(ᾱ ∗ α ∗ f, ᾱ ∗ α ∗ c) = G(f, c). (13)

This means that if all links with capacity have a load and all links with a load
have capacity (for instance if c = c(f )), then G(f, c) is a function of the ratios
fe
ce

on the used links i.e. the links in L(f ) = L(c), as long as the topology of the
network does not change.
Secondly, we note that the function G does not increase if the loads and capa-
cities of some links are set equal to zero. In other words, for every given vector
(f, c), if (f̄ , c̄), corresponding to an arbitrary set L0 ⊂ L, is defined by

(f̄e, c̄e) =
{
(0, 0) if e ∈ L0

(fe, ce) if e /∈ L0 ,
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then as a result of 12, choosing αe = 1 for e /∈ L0 and αe = 0 for e ∈ L0, we
have

G(f̄ , c̄) � G(f, c). (14)

Although this assumption seems restrictive, the performance costs naturally do
not increase if both the flow and the capacity are multiplied by the same factor.
Indeed in many practical cases, theses costs are varied as functions of the ratio
f/c.

5. The term Y (f ) as a multiplier in the performance cost function is introduced to
cover certain models of road transportation as well. For all other models (and
more naturally) this term vanishes as Y (f ) = 1. However to make our model
as general as possible we will assume that Y (f ) is a linear function and that
Y (f ) � 0 if f ∈ �.

6. The set S is assumed to have the property that

if (f, c) ∈ S then (α ∗ f, α ∗ c) ∈ S for all α � 0. (15)

Note that this is for instance true if the only constraints are f � c.
Now we can state the main result of this paper.

3.2. THE CONCAVITY THEOREM

THEOREM 1. If all conditions listed above are satisfied then

H(f ) = min
{c|(f,c)∈S}

F(f, c)

is a concave function of f ∈ �.
Proof of the theorem. Choose any two feasible loads f 1 and f 2, and 0 < λ < 1

and let

f 0 = λf 1 + (1 − λ)f 2. (16)

Since � is a convex set, f 0 ∈ �. It will be shown that

λH(f 1) + (1 − λ)H(f 2) � H(f 0). (17)

Let ci be the optimal capacity corresponding to f i , so that

H(f i) = Y (f i)G(f i, ci) + X(ci), for i = 0, 1, 2. (18)

Define the components αi
e of the vectors αi for i = 1, 2 by

αi
e =




f i
e

f 0
e

if f 0
e �= 0

0 if f 0
e = 0

. (19)
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Notice that f 0
e = 0 if and only if f 1

e and f 2
e are both zero. Hence for i = 1, 2,

f i = αi ∗ f 0 (20)

and

λα1
e + (1 − λ)α2

e =
{

1 if f 0
e �= 0

0 if f 0
e = 0

. (21)

Note that because (f 0, c0) ∈ S, by using 20, we will have

(f i, αi ∗ c0) = (αi ∗ f 0, αi ∗ c0) ∈ S, (22)

and, because ci is the optimal capacity for f i (i = 1, 2),

F(f i, ci) � F(f i, αi ∗ c0). (23)

Therefore using 23, 22 and 12, we have

λH(f 1) + (1 − λ)H(f 2) = λF(f 1, c1) + (1 − λ)F (f 2, c2) (24)

� λF(f 1, α1 ∗ c0) + (1 − λ)F (f 2, α2 ∗ c0) (25)

= λY (f 1)G(α1 ∗ f 0, α1 ∗ c0) + λX(α1 ∗ c0) (26)

+ (1−λ)Y (f 2)G(α2 ∗ f 0, α2 ∗ c0) + (1−λ)X(α2 ∗ c0) (27)

� (λY (f 1) + (1 − λ)Y (f 2))G(f 0, c0) (28)

+ λX(α1 ∗ c0) + (1 − λ)X(α2 ∗ c0) (29)

� Y (f 0)G(f 0, c0)+X((λα1+(1−λ)α2) ∗ c0), (30)

where, in the last inequality, the concavity of X, linearity of Y and non–negativity
of G have been used. Now note that assumption 2 implies that c0

e = 0 if f 0
e = 0.

Hence from 21 it can be concluded that

(λα1 + (1 − λ)α2) ∗ c0 = c0. (31)

This completes the proof.

3.3. THE CONCAVITY RESULT FOR COMMUNICATION NETWORKS

In this section we will approve the conditions of the theorem for the communica-
tion networks. The important observation is that G(f, c) in equation (8) depends
only on the ratios fe/ce and therefore the assumptions of the Concavity The-
orem are satisfied, either if this function is used as the performance cost (i.e., if
F(f, c) = G(f, c) + X(c)) or if it is used to restrict the delay to a specified limit
(i.e., F(f, c) = X(c) and constraint G(f, c) � q).
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Even if a more elaborate expression is used for the total delay, it is still likely to
depend on the ratios fe/ce only and the argument put forward here is still valid: the
Concavity Theorem still applies, of course assuming that all the other conditions
which are not related to the performance cost also hold, which effectively means
that X(c) must be concave as for this model Y (f ) = 1.

Note that the function H need not be separable in the links even if the delay and
the design costs are. For instance, for the function

H(f ) = min
c

∑
e∈L

γece | G(f, c) � q, f ∈ � (32)

where G(f, c) is defined by Kleinrock’s formula, one can derive an explicit
expression

H(f ) =
∑
e

γefe + 1

q
(
∑
e

√
γefe)

2. (33)

which is not separable into link costs, but as we know from the Concavity Theorem
must be concave.

4. Application of the result to transportation networks

In a transportation system the average delay D(fe, ce) on a link is often assumed
to be a function of the ratio fe/ce [18], and the total delay for the link is then
feD(fe/ce), unlike the model discussed above for a communication network, where
the total delay is a function of the ratio fe

ce
. If the total delay in the network is

selected again as the performance measure

G(f, c) =
∑
e∈L

feD(
fe

ce
) (34)

then it is clear that this is not of the form required for the Concavity Theorem.
However the theorem still applies if we assume that the design cost is also separable
in the links, i.e. if the objective function to be minimized is

F(f, c) =
∑
e∈L

Fe(fe, ce) =
∑
e∈L

[feD(
fe

ce
) + Xe(ce)] (35)

and if there are no constraints involving more than one link, because in that case
the function H(f ) is also separable in the links,

H(f ) =
∑
e∈L

He(fe) =
∑
e∈L

min
ce

[feD(
fe

ce
) + Xe(ce)], (36)

and the capacity of each link is optimized separately.
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However for a single link the Concavity Theorem does apply, assuming that Xe

is concave. This can be easily verified by substituting of fe as Y (f ) in the theorem,
i.e. Fe(fe, ce) = feD(fe/ce)+Xe(ce) is then of the required form. So the theorem
states that then He(fe) is concave for every link e and therefore H(f ) is concave.

4.1. AN EXAMPLE

Consider a network containing one link (|L| = 1). Suppose that G is a differenti-
able, increasing and strictly convex function where G(0) = 0, Y (f ) = f , and X

is a piecewise linear concave function as defined below:

X(c) =
{
a1c if 0 � c � c∗
a2c + (a1 − a2)c

∗ if c > c∗ ,

where c∗ > 0 and a1 > a2 > 0. It is easily verified [2] that H is a piecewise linear
and concave function as follows:

H(f ) =




(G(y1) + a1

y1
)f if f � f ∗

(G(y2) + a2

y2
)f + (a1 − a2)c

∗ if f > f ∗ ,

where yi is the unique solution of y2G
′
(y) = ai (i = 1, 2), y1 > y2 > 0 and

f ∗ = (a1 − a2)c
∗

G(y1) − G(y2) + a1
y1

− a2
y2

.

5. Discussion

Although we have only discussed two examples, there are no doubt many network
design models where the Concavity Theorem applies. Spelling out the conditions
as we have done in this paper should make it easier to recognize such situations.
In general these are the models where the performance function is a measure of
the average delay in the network and the design cost is concave in terms of the
capacity. In these models the capacity ce on a link is interpreted as the service rate
that is provided and the stochastic model underlying the derivation of the delay is
based on Poisson distributions for the loads, which means that the delays depend
on the ratios fe/ce only.

There are of course also many models where the theorem is not valid. This
is in particular the case when the capacity is interpreted as a physical quantity
(for instance number of circuits). Then there is no reason to assume that the delay
depends on the ratios fe/ce only and the conditions of the theorem will usually not
apply. Also if a different performance measure is selected (for instance lost calls,
as in telephone networks) then the conditions may not hold.
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When the theorem is valid, the design problem may be converted to a rout-
ing problem with a concave cost objective function. Then this has several con-
sequences. Firstly, because of the concavity of the objective function, local op-
timality does not imply global optimality. This indicates that finding the over-
all minimum corresponds to searching all the extreme points of the feasible set.
This will make the problem of finding a minimum cost network very difficult,
computationally, as there usually will be a large number of local optima.

Then, secondly, one probably has to settle for an approximate solution found
by using a random search procedure or a construction method that cannot guar-
antee optimality. At best, one can hope that a proper lower bounding procedure is
available. Many such methods are described in the literature [1, 5, 9, 12, 14, 19].

However concavity of the objective function also has another consequence by
exploring the characterization of the extreme points. This is that one only has to
look for single path routing, which means that all traffic of one commodity is alloc-
ated to one single route [13]. It is a well-known fact that there is such an optimal
routing if the objective function (as a function of the load) is concave. This observa-
tion may simplify the computations considerably and existing methods invariably
make use of this fact.
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